

Tree Preservation Protocol – 100 Years

Version 11.100 | February 7, 2022

Urban Forest Carbon Registry, City Forest Credits, a 501(c)(3) non-profit organization 999 Third Avenue, Suite 4600 Seattle, WA 98104 info@cityforestcredits.org

Copyright © 2016-2022 Urban Forest Carbon Registry and City Forest Credits. All rights reserved.

Protocol Drafting Group

The list below comprises the members of the protocol drafting group and their affiliations in 2015:

Zach Baumer - City of Austin, Climate Program Manager

Rich Dolesh - National Recreation and Park Association, Vice President Conservation & Parks

lan Leahy - American Forests, Director of Urban Forest Programs

Scott Maco - Davey Institute, Director of Research & Development

Jenny McGarvey - Alliance for Chesapeake Bay, Forest Programs Manager

Greg McPherson - U.S. Forest Service, Research Scientist

Mark McPherson - City Forest Credits, Executive Director

Darren Morgan - Seattle Department of Transportation, Manager

Walter Passmore - City of Palo Alto, City Forester

Shannon Ramsay - Trees Forever, Founder

Heather Sage - Pittsburgh Parks Conservancy, Director of Community Projects

Misha Sarkovich - Sacramento Municipal Utility District, Customer Solutions

Gordon Smith - Ecofor

Skip Swenson - Forterra, Vice President

Andy Trotter - West Coast Arborists, Vice President of Field Operations

TABLE OF CONTENTS

1.	Eligibility Requirements	2
1.1	Project Operators and Projects	2
1.2	Project Implementation Agreement	2
1.3	Project Location	3
1.4	Defining the Project Area	4
1.5	Ownership or Eligibility to Receive Potential Credits	4
2.	Key Project Dates	5
2.1	Project Submittal Date	5
2.2	Project Duration	5
2.3	Date for Recordation of Preservation Commitment	5
2.4	Credit Commencement Date for Issuance of Credits	6
2.5	Monitoring Reports	6
2.6	Vintage of Credits	6
3.	Project Documentation and Record-keeping	7
4.	Demonstrating Preservation and Threat of Loss	7
5.	No Double Counting and No Net Harm	9
6.	Additionality	9
7.	Issuance of Credits	11
7.1	Credit Issuance Requirements	11
7.2	Credit Issuance Schedule	11
7.3	Credits for Reversal Pool Account	12

8.	Monitoring and Reporting	12
9.	Reversals	14
9.1	Avoidable Reversals	14
9.2	Unavoidable Reversals	15
10.	Continuation of Projects after 100-Year Project Duration	16
11.	Quantification for Credits	16
11.1	Quantifying Stored Carbon Stock Present within the Project Area	17
11.2	Areas Expected to Remain in Trees after Potential Development	18
11.3	Re-measurement and Verification of Carbon Stock Necessary to Clai Additional Credits for Growth	
11.4	Quantification of Soil Carbon	19
11.5	Calculation of Deduction for Displaced Development	20
11.6	Quantifying Co-Benefits	21
12.	Social Impacts	21
13.	Validation and Verification	22
13.1	Verification of Eligibility Requirements	23
13.2	Verification of Project Operator's Quantification of Carbon	23
13.3	Validation	24
14.	Verification Report	25
Appendic	es	26

Abbreviations, Acronyms, and Glossary

Carbon (C) A chemical element

Carbon Dioxide (CO₂) One carbon atom and two oxygen atoms

Carbon Dioxide Equivalent

 (CO_2e)

Unit for comparing the radiative forcing of a GHG to

carbon dioxide

Credit A unit representing one metric ton of CO₂e

Credit Commencement

Date

The date from which credit issuance is calculated per

specific Protocol requirements

Diameter at Breast Height

(DBH)

The standard for measuring trees (4.5 feet above the

ground)

Greenhouse gas (GHG) Gaseous constituent of the atmosphere, both natural and

anthropogenic, that absorbs and emits radiation at specific wavelengths within the spectrum of infrared radiation

emitted by the Earth's surface, the atmosphere, and clouds

International Organization

for Standardization (ISO)

Independent international nongovernmental organization

made up of standards bodies

Project Implementation

Agreement (PIA)

Contract with the Registry setting forth the Project Operator's obligation to comply with the Protocol

Project Operator (PO) Individual or entity who undertakes a Project, registers it

with the registry of City Forest Credits, and is ultimately responsible for all aspects of the Project and its reporting

Registry City Forest Credits/Urban Forest Carbon Registry

Reversal A reversal is tree loss that results in release of credited CO₂

such that the carbon stock in the project falls below

credited CO₂

Vintage The vintage of credits shall be the year in which credits are

issued to a project. This includes credits issued under the status of "issued and held" in the Registry credit database

Introduction

This City Forest or Urban Forest Carbon Protocol sets forth the requirements for Tree Preservation projects in urban areas in the United States to quantify greenhouse gas ("GHG") emission mitigation from woody biomass. That woody biomass is referred to herein by the broader terms "city forests" or "urban forests."

This protocol provides eligibility rules, methods for quantifying biomass and CO₂ storage, and reporting, monitoring, issuance of credits, reversal, and verification requirements. We have been guided in our drafting by one of the foundational documents for carbon protocols, the World Resources Institute/World Business Council for Sustainable Development Greenhouse Gas Protocol for Project Accounting, which describes greenhouse gas ("GHG") project accounting principles. We refer to this document as the WRI GHG Protocol.

Our goal is in this protocol is to provide for accounting of GHG emission mitigation in a consistent, transparent, and accurate manner, consistent with the principles and policies set forth in the WRI GHG Protocol document. This process will form the basis for GHG reductions that are real, additional, permanent, verifiable, and enforceable, which can then result in the issuance of city forest carbon offset credits, called City Forest Carbon+ Credits^M.

A Protocol Development Report posted publicly on the Registry website contains detailed information on urban forestry, urban forest carbon, development of this protocol and prior efforts to develop urban forest carbon protocols.

1. Eligibility Requirements

1.1 Project Operators and Projects

A Project requires at least one Project Operator, an entity organized and licensed under the laws of its jurisdiction, or a governmental body, which undertakes a Project, registers it with City Forest Credits (the "Registry"), and is responsible for the project and its reporting.

A Project may include multiple parcels.

1.2 Project Implementation Agreement

The Project Operator must sign a Project Implementation Agreement (PIA) with the Registry setting forth the Project Operator's obligation to comply with this Protocol for a 100-year project duration.

1.3 Project Location

Projects must be located in parcels within or along the boundary of at least one of the following:

- A. The Urban Area or Urban Cluster boundary ("Urban Area"), defined by the most recent publication of the United States Census Bureau (https://www.census.gov/geographies/reference-maps/2010/geo/2010-census-urban-areas.html);
- B. The boundary of any incorporated city or town created under the law of its state;
- C. The boundary of any unincorporated city, town, or unincorporated urban area created or designated under the law of its state;
- D. The boundary of any regional metropolitan planning agency or council established by legislative action or public charter. Examples include the Metropolitan Area Planning Council in Boston, the Chicago Municipal Planning Agency, the Capital Area Council of Governments (CAPCOG) in the Austin, Texas area, and the Southeastern Michigan Council of Governments (SEMCOG);
- E. The boundary of land owned, designated, and used by a municipal or quasimunicipal entity for source water or watershed protection. Examples include Seattle City Light South Fork Tolt River Municipal Watershed (8,399 acres owned and managed by the City and closed to public access);
- F. A transportation, power transmission, or utility right of way, provided the right of way begins, ends, or passes through some portion of A through D above.

In recognition of the urban-rural gradient and the strong public policy interest in preserving open space and forest land within and along that gradient, the Project may lie outside the boundary of one of A through F above. But any Project outside the boundary of A through F above must lie within or across parcels that constitute a sequence, chain, or progression of contiguously connected parcels. In addition, some part of the property line of one of those contiguously connected parcels must be coterminous with the boundary of one of A through F above.

1.4 Defining the Project Area

The Project Operator must specify the Project Area and provide an electronic map of the Project Area with geospatial location in any file type that can be imported and read by Google Earth Pro (example KML, KMZ, or Shapefile format).

Project Area boundaries do not have to follow land parcel boundaries. The Project Area must:

- A. Be within one of the areas specified in Section 1.3 on Project Location. The Project Area may consist of contiguous or non-contiguous parcels, subject to the requirements of Section 1.3.; and
- B. Meet the requirements of Section 4.3; and
- C. Have at least 80% tree canopy in locations that receive at least 20 inches of precipitation per year or 60% tree canopy in locations that receive less than 20 inches of precipitation per year

Precipitation may be determined by maps produced by a government agency, or from the average of the most recent ten years of data from the nearest government precipitation measurement station for which data is publicly available.

Forests naturally have spaces between trees and gaps, and locations of these gaps may change over time. The Project Operator may choose to map gaps in the forest and exclude those non-treed areas from the Project Area. If the Project Operator does not exclude gaps from the Project Area, determination of the carbon stock and sequestration on the Project Area must account for tree canopy gaps using a method that is consistent with the methods for quantifying Project Stock in Section 11.1.A.

Project Operators are encouraged to identify Project Areas that contain only land that is developable and where trees are not specifically protected by zoning, environmental overlays, or development regulations prior to the Preservation Commitment (described in Section 4). Trees that are protected by law prior to the Preservation Commitment are not creditable.

1.5 Ownership or Eligibility to Receive Potential Credits

The Project Operator must demonstrate ownership of potential credits or eligibility to receive potential credits by meeting at least one of the following:

- A. Own the land, trees, and potential credits upon which the Project trees are located; or
- B. Own an easement or equivalent property interest for a public right of way within which Project trees are located or own the Project trees and credits

- within that easement, and accept ownership of those Project trees by assuming responsibility for maintenance and liability for them; or
- C. Have a written and signed agreement from the land or tree owner granting ownership to the Project Operator of any credits for carbon storage or other greenhouse gas benefits, and other co-benefits delivered by Project trees on that landowner's land. If Project trees are on private property, this agreement must be recorded in the public records of the county in which the land containing Project trees is located.

2. Key Project Dates

2.1 Project Submittal Date

The Project Operator must submit an Application to the Registry within two years of the date of the Preservation Commitment under subsection 4.1 below. Projects whose Preservation Commitment dates from prior to November 1, 2017 are not eligible.

Project Operators must submit all Project Documents for crediting to the Registry within 6 months of Approval of the Project's Application.

If a Project includes multiple parcels, the starting date for the two-year period within which an application must be submitted is the date of the last Preservation Commitment on any parcel within that Project.

The Registry retains sole discretion over approval of Applications and registration of projects.

2.2 Project Duration

The Registry will issue credits based on a commitment to a 100-year Project Duration, including a 100-year Preservation Commitment (see Section 4.1 for definition of Preservation Commitment). Project Duration starts on the date the first Verification Report is issued. Projects may earn credits after 100 years as provided in Section 9.

2.3 Date for Recordation of Preservation Commitment

The Recorded Encumbrance defined in Section 4.1 as the Preservation Commitment must be recorded no later than 6 months after Registry approval of the Project Application.

2.4 Credit Commencement Date for Issuance of Credits

For projects whose credits are issued over more than one year, the date at which each subsequent annual issuance occurs is the annual anniversary of the signing date of the document containing the Preservation Commitment. This date shall be called the "Credit Commencement Date."

For example, if the signing date of a recorded easement containing the Preservation Commitment protecting the project trees is on June 1, 2022, then second year's issuance of credits occurs on June 1, 2023, which is one year from the Credit Commencement Date.

2.5 Monitoring Reports

Project Operators shall submit monitoring reports under Section 7 every three years dating from the first Verification Report.

The Registry ensures permanence by 1) requiring triennial monitoring reports under Section 7 throughout the project duration, 2) requiring all Project Operators to sign a Project Implementation Agreement under Section 1.2 agreeing to comply with all protocol requirements, including reversals, and 3) maintaining a Reversal Pool Account holding credits retained from projects to compensate for Unavoidable Reversals under Section 8.

2.6 Vintage of Credits

The vintage of credits shall be the year in which credits are issued to a project. This includes credits issued under the status of "issued and held" in the Registry credit database.

3. Project Documentation and Record-keeping

Project Operators shall submit all documents required by this Protocol and the Registry, using templates or forms supplied by the Registry, including:

- Application
- Project Implementation Agreement
- Ownership or Eligibility to Receive Potential Credits
- Project Design Document and supporting attachments
- Preservation Commitment
- Attestations of Additionality, No Double Counting, and No Net Harm
- Carbon and Co-Benefit Quantification
- Monitoring reports

Project Operators shall keep all documents and forms related to the project for the Project Duration. If the Project seeks credits after the Project Duration, it must retain all documents for as long as it seeks issuance of credits. This information may be requested by the Registry at any time.

The Registry requires data transparency for all Projects. For this reason, all project data reported to the Registry will be publicly available on the Registry's website or by request.

4. Demonstrating Preservation and Threat of Loss

The Project Operator must meet the requirements of Sections 4.1, 4.2, 4.3, and 4.4:

4.1 That the trees in the Project Area are preserved from removal by a recorded easement, covenant, or deed restriction (referred to hereafter as "Recorded Encumbrance") with a term of at least 100 years. This action is referred to as the "Preservation Commitment." This Recorded Encumbrance must be recorded not later than 12 months after Registry approval of the Project's Application.

And,

- 4.2 That prior to the Preservation Commitment in Subsection 4.1 above, the project trees were not preserved from removal through a Recorded Encumbrance or other prohibitions on their removal, and
- 4.3 That prior to the Preservation Commitment in Subsection 4.1 above, the Project Area:
 - A. Was in a land use designation that allows for at least one non-forest use. Non-forest uses include industrial, commercial, transportation, residential, agricultural, or resource other than forest, as well as non-forest park, recreation, or open space uses, and
 - B. Is not in an overlay zone that prohibits all development. The words "overlay zone" are intended to include prohibitions on development such as critical areas or wetlands designations, but if a Project Operator believes an overlay zone allows development, the Project Operator may submit the facts to the Registry and seek a determination that it has met the requirements of Section 4.3.A
- 4.4 That prior to the Preservation Commitment in Subsection 4.1 above, the Project Area meets at least one of conditions A, B, or C:
 - A. Was surrounded on at least 30% of its perimeter by non-forest, developed, or improved uses, including residential, commercial, agricultural, or industrial. The following four sentences are provided as clarification of this provision. Paved roads are considered a developed or improved use. If the property parcels containing the Project Area are adjacent to a non-developable land feature, such as a stream, the far side of the non-developable feature can be used as the perimeter when calculating the fraction of the perimeter that is developed. If the Project Area is surrounded by land in the same ownership as the Project Area, the 30% perimeter can apply to the surrounding land. If the Project Area consists of several parcels not contiguous, the 30% perimeter requirement can be calculated based on the sum of the perimeters of all the parcels; or
 - B. Had been sold or conveyed or had an assessed value within three years of preservation under Subsection 4.1 for greater than \$8,000 average price per acre for the bare land; or
 - C. Would have a fair market value after conversion to a non-forested "highest and best use" greater than the fair market value after preservation in subsection 4.1, as stated in a "highest and best use" study from a state certified general real estate appraiser in good standing.

5. No Double Counting and No Net Harm

- 5.1 No Project shall seek credits on trees, properties, or projects that have already received credits from the City Forest Credits Registry or any other carbon registry, with the exception of credits for additional growth on project area under Section 11.3. Project Operators must sign an attestation that there is no double counting of credits.
- 5.2 No Project shall cause net harm to the environment of urban communities. Project Operators must sign an attestation that there is no net harm.

6. Additionality

A project activity is additional if it can be demonstrated that the activity results in emission reductions or removals that are in excess of what would be achieved under a "business as usual" scenario and the activity would not have occurred in the absence of the incentive period provided by the carbon markets. In all cases, projects that are required by law or regulation are excluded.

Projects that use this avoided conversion Tree Preservation Protocol must meet additionality requirements embedded in the specific required elements of the protocol.

The CFC Standard and the Tree Preservation Protocol ensure additionality through the following requirements that are contained in Section 4:

- Prior to the start of the Project, the trees in the Project Area cannot be protected via easement or recorded encumbrance or in a protected zoning status that preserves the trees.
- The zoning in the Project Area must currently allow for a non-forest use.
- The trees in the Project Area face some risk of removal or conversion out of forest.

The Tree Preservation Protocol sets out three tests to determine whether the trees or forest in a Project Area face a threat or risk of tree removal or conversion out of a forested use. The Project must demonstrate that the Project Area meets at least one of the following three tests:

A. Was surrounded on at least 30% of its perimeter by non-forest, developed, or improved uses, including residential, commercial, agricultural, or industrial. Note, the Protocol contains additional text for clarification of this test; or

- B. Project land been sold or conveyed or had an assessed value within three years of preservation under Subsection 4.1 for greater than \$8,000 average price per acre for the bare land; or
- C. Project land would have a fair market value after conversion to a non-forested "highest and best use" greater than the fair market value after preservation in subsection 4.1, as stated in a "highest and best use" study from a state certified general real estate appraiser in good standing.

The first two of these "risk of conversion" tests are empirical. If the Project Area is surrounded on at least 30% of its perimeter or is valued or sold within the three prior years at more than \$8,000 per acre, then the project meets this requirement of risk of tree removal or conversion. Both tests reflect the development pressure on land in metropolitan areas. If a forested parcel in a metropolitan area is surrounded on 30% of its perimeter by improved or developed uses, and if the zoning allows a more intensive nonforest use, and if the trees are not protected, then the project meets the test of risk of removal or conversion.

Similarly, if a forested parcel has been sold or assessed at greater than \$8,000 per acre, then the development pressure is significant. With timber land valued at approximately \$2,000 per acre, a valuation of four times greater than that in a metropolitan area indicates that the value of the parcel is in development, not in trees, and that the risk of conversion is high.

The third test also rests upon the value of the land as preserved versus its value as developed. If the highest and best use of the land as developed under existing zoning is higher than the value of the land preserved in forest, then the risk of conversion is high.

Taken together, the above elements allow crediting only for unprotected trees, at risk of removal, which are then protected by a project action of preservation, providing additional avoided GHG emissions.

Additionality is embedded also in the quantification methodology. Projects cannot receive credits for trees that would have remained had development occurred, nor can they receive soil carbon credits for soil that would have been undisturbed had development occurred. Sections 10.2 and 10.4 of the Protocol address displaced development to other lands. This is generally categorized as leakage, but it contains an additionality element as well. Section 10.5 describes the deduction calculations for displaced development.

7. Issuance of Credits

7.1 Credit Issuance Requirements

The Registry will issue City Forest Carbon+ Credits, representing a tonne of carbon dioxide equivalent (CO₂e) per credit plus other ecosystem benefits. To request credits, Project Operators shall submit a completed Project Design Document to the Registry, including quantification data and other required information set forth in Section 3 above.

As set forth in Section 13, the Project Operator's compliance with both eligibility and quantification requirements shall be reviewed and verified by a third-party verifier, known henceforth as a Validation and Verification Body (VVB). The Registry shall issue credits only after receiving a Verification Report, completing its own Registry Validation Report, and only in the amount and schedule set forth in the Verification Report (see Section 13) and per the Project Implementation Agreement.

7.2 Credit Issuance Schedule

Credits on properties or projects greater than 50 acres are issued over time, as set forth in this section below. Credits and the anniversaries of credit issuance shall be dated from the effective date of the document containing the Preservation Commitment as defined in Section 4.1 (per Section 2 on Key Dates, this dating of the credits is referred to as the "Credit Commencement Date.")

The Registry shall continue to issue credits on the schedule contained in the Verification Report until modification of that issuance of credits is necessary due to a request by the Project Operator for credits for quantified and verified additional growth under Section 11.3, noncompliance under Section 8 on Monitoring and Reporting, or a reversal under Section 8.

A Project may request third-party verification, followed by issuance of credits if verified, at any time after the Preservation Commitment is in place protecting project biomass and after all project documents have been submitted, subject to the provisions below.

Subject to all the requirements of this Protocol, credits are issued as follows after third-party verification and validation by the Registry:

- If the Project Area is 50 acres or less, credits are issued after third-party verification and validation by the Registry.
- If the Project Area is greater than 50 acres and not more than 200 acres,
 credits are issued attributable to the equivalent of 50 acres of the Project.

- If the Project Area is greater than 200 acres, credits are issued in equal amounts over 5 years.
- At each subsequent annual anniversary of the Credit Commencement Date, and as set forth in the Verification Report's schedule of issuance of credits, the Project Operator may request issuance of credits until all attributed credits have been issued.

For example, if the Project Area is 78 acres, the Project Operator would quantify the CO₂e eligible for crediting on all 78 acres. After third-party verification and validation by the Registry, the Project is eligible to be issued credits for the equivalent of 50 acres, with remaining credits issued on the anniversary of the Credit Commencement Date for the remaining 28 acres.

This issuance of credits over time reflects the likely staging of development over time if the project area were to have been developed. The schedule of issuance also reflects that one of the first actions taken upon metropolitan land being developed is clearing and grading. Developers often clear and grade as early as possible to "vest" development rights in the project, to discourage opposition to a project, or to reduce the cost of constructing inground infrastructure such as sewer and water.

Additional growth under Section 11 must be quantified and verified before any credits can be issued for that additional growth.

7.3 Credits for Reversal Pool Account

The Registry will issue 90% of Project credits earned and requested and will hold 10% in the Registry's Reversal Pool Account. At the end of the Project Duration, if application of Registry accounting methods shows that the Project has generated more credits than the Project has been issued, then, (if the Project Operator requests) the Registry will issue to the Project excess credits. Amounts of credits to be issued under the provisions of this section are gross amounts and include amounts to be issued to both the Project Operator and amounts to be transferred to the Registry's Reversal Pool Account.

8. Monitoring and Reporting

Project Operators must submit a triennial monitoring report to the Registry throughout the Project Duration.

In each monitoring report, the Project Operator must report on tree conditions across the Project Area to the Registry. These reports must be submitted no less frequently than on

the triennial anniversary of the date of the first Verification Report. If a monitoring report is due under the triennial reporting schedule after the 100-year project duration, the last monitoring report may be submitted at the end the 100-year project duration.

The reports must be in writing, and the Project Operator must attest to the accuracy of the reports. The reports must be accompanied by some form of telemetry or imaging that captures tree canopy, defined as Google Earth, aerial imagery (distinguishing tree canopy from shrubs and other non-tree vegetation), LiDAR, or some other telemetry or imaging approved by the Registry. The Project Operator must utilize this imaging to report on any canopy loss. The initial report is intended to be a low-cost assessment of any tree canopy loss, and if the monitoring report indicates to the Registry that a credit reversal may have occurred, the Registry will require more precise quantification of the biomass carbon stock present within the project area.

The reports shall state the cumulative net area of tree canopy loss within the project area, relative to the canopy area quantified in the first verification of the project. To quantify loss of tree canopy area, the Project Operator may use interpretation of telemetry or imaging, point sampling, assessment by a forestry expert, or by another method approved by the Registry. The report shall describe the method used to quantify canopy loss.

If the Project Operator estimates cumulative net loss of 8% or more of tree canopy, further investigation will be required. The Registry will work with the Project Operator to determine an efficient way to quantify carbon stocks within the Project Area and whether there is a reversal under Section 9.

The report shall also estimate the number of acres of significant soil disturbance that has occurred since the previous report. Plowing and removal of topsoil both constitute significant soil disturbance, however creating non-motorized trails for recreation is allowed and does not constitute significant soil disturbance. For the purposes of these reports, areas of soil exposed by trees tipping over are not counted as areas of significant soil disturbance.

If a Project Operator fails to submit a report when due under this section, the Registry shall notify the Project Operator of such failure. The Project Operator shall then have 60 days to submit reports under this section.

If a Project Operator fails to monitor or to report after receiving notice and an opportunity to cure its failure under the preceding paragraph, the Registry can investigate and take actions including assessing carbon stock and invoking the reversal provisions of Section 9 as well as cancelling of the Project and all credits issued.

Project Operators are always subject to the reversal provisions of Section 9, regardless of any monitoring and reporting they do.

9. Reversals

Reversals can occur if tree loss results in release of credited CO_2 into the atmosphere. Or, put it another way, a reversal can occur if there is a loss of stored carbon serving as the basis for credits for GHG emission mitigation after credits have been received by projects but before the expiration of the Preservation Commitment. (References in this section to "carbon" shall mean CO_2 e serving as the basis for credits for GHG emission mitigation). A "Reversal" is loss of stored carbon such that the remaining stored carbon within the Project Area is less than the amount of stored carbon for which Registry credits have been issued.

The Registry will retain in a Reversal Pool Account 10% of all credits issued to preservation projects and 5% issued to planting projects. This Reversal Pool Account shall be used to compensate for Unavoidable Reversals as set forth below. The Registry does not compensate Project Operators for the retained credits in the Reversal Pool Account. The Registry may provide in the future for distribution of credits in the Reversal Pool Account to Project Operators if the actual reversals are less than current evaluation of risk.

This section sets forth rules for determining the type of Reversal, calculating the amount of the Reversal, and compensating for the Reversal.

9.1 Avoidable Reversals

A. Notice and Calculation of Avoidable Reversals

An Avoidable Reversal is any Reversal that is due to the Project Operator's negligence, gross negligence, or willful intent, including harvesting, development, and harm to the trees in the Project Area due to the Project Operator's negligence, gross negligence or willful intent.

If the Project Operator becomes aware of a potential Avoidable Reversal, the Project Operator shall deliver written notice to the Registry within 60 days of becoming aware of the potential Reversal. If the Registry determines that an Avoidable Reversal has occurred, it shall deliver written notice to the Project Operator.

Within 90 days of receiving written notice from the Registry of an Avoidable Reversal, the Project Operator shall calculate the number of remaining creditable tonnes CO₂e in the Project Area using the quantification methods contained in Section 11 of this Protocol. The Project Operator may use another quantification method only after receiving written approval by the Registry.

The Registry shall then determine the number of credits reversed and deliver written notice to the Project Operator of that amount and its obligation to compensate for those reversed credits.

B. Compensation for Avoidable Reversals

Within 60 days of being notified of the number of credits that it is obligated to replace, the Project Operator shall submit to the Registry a sufficient number of City Forest Carbon+ Credits to cover the shortfall. One way for Project Operators to provide replacement credits is to purchase these from other projects that have received credits from the Registry.

Quantifications of carbon stocks determined by the Registry shall be considered to be verified amounts under this section.

9.2 Unavoidable Reversals

An Unavoidable Reversal is any Reversal not due to the Project Operator's negligence, gross negligence or willful intent, including, but not limited to disease, fire, drought, cold, ice/snow, wind/hurricane, flooding, earthquake, landslide, and volcano.

A. Notice and Calculation of Unavoidable Reversals

If the Project Operator becomes aware of a potential Unavoidable Reversal, the Project Operator shall deliver written notice to the Registry within 60 days of becoming aware of the potential Reversal. If the Registry determines that an Unavoidable Reversal has occurred, it shall deliver written notice to the Project Operator.

The Registry shall calculate the number of remaining creditable tonnes CO₂e in the Project Area using the quantification methods contained in Section 11 of this Protocol. If the Registry determines that more credits have been issued to the Project (counting both credits issued to the Project Operator and credits transferred to the Registry's Reversal Pool Account), the Registry shall notify the Project Operator of its calculation of remaining CO₂e and of the shortfall.

B. Compensating for Unavoidable Reversals

Unavoidable Reversals are compensated by credits retired by the Registry from the Registry's Reversal Pool account.

If a Project has had its carbon stock go below the carbon stock necessary to support credits issued by the Registry, no further credits will be issued to the Project until the carbon stocks are above the amounts needed to support issued credits, including credits allocated to the Registry's Reversal Pool Account.

If a Project Operator fails to compensate for a reversal, that Operator's projects may be terminated and the Project Operator may be barred, at the sole discretion of the Registry, from submitting applications to the Registry.

10. Continuation of Projects after 100-Year Project Duration

After a 100-year Project Duration, Projects may continue their activities, submit Project Documents required to receive credits (see Section 3), and seek issuance of credits for additional growth under Section 11.3. Project Operators must submit an updated Project Design Document with quantification and comply with all applicable requirements of this Protocol to obtain credits for additional growth or credits beyond the 100-year Project Duration.

11. Quantification for Credits

The Registry will issue City Forest Carbon+ Credits to a Project only after quantification by a Project Operator, verification by a Validation and Verification Body contracted by the Registry, and a request for issuance of credits by a Project Operator. Project Operators must follow the following Quantification methods.

There are five steps in the quantification of credits generated by a Project. These steps are described in full in this section, beginning with sub-section 11. In summary, the five steps are:

- 1. Estimate the biomass stock present, and adjust for uncertainty in the estimate to calculate the "Accounting Stock" (Section 11.1)
- 2. Calculate the fraction of the Accounting Stock that likely would be emitted as a result of development, to calculate "Avoided Biomass Emissions" (Section 11.2)
- 3. The Project Operator may elect to also account for additional growth of trees within the Project Area, or may choose not to count additional growth (Section 11.3)
- 4. Calculate "Avoided Soil Carbon Emissions" (Section 11.4)
- 5. Apply the deductions for displaced development (leakage) to Avoided Biomass Emissions and Avoided Soil Carbon Emissions as set forth in Section 11.5

- 6. Quantify Co-Benefits as set forth in Section 11.6.
- 11.1 Quantifying Stored Carbon Stock Present within the Project Area

Acceptable ways of quantifying the stored carbon stock present within the Project Area include:

A. The afforestation table, Appendix B, from the US Forest Service General Technical Report (GTR) NE-343 appropriate to the geographic area and species, "total nonsoil" carbon stock for stands of the age of the forest on the Project Area. If this method is used, the Project Area must be assessed and divided into stands as by the species grouping in the relevant geographic area in GTR NE-343 and by stand age. Stand age may be determined by publicly available historical materials, such as photographs, land use records, or timber harvest records, documenting afforestation of the Project Area or presence of substantially complete tree cover on the Project Area. Stand age may be determined by coring a random or well distributed systematic selection of trees. Other methods to determine stand age may be used, subject to approval by the Registry. If the Project Area is classified as one stand, at least 30 co-dominant trees well distributed across the Project Area will be used to calculate stand age. If the Project Area is divided into more than one stand, at least 20 co-dominant trees per stand will be used to determine stand age. For each stand, stand age shall be the median age of the sampled trees.

If using this quantification method in Section 11.1.A, the Project must measure the percent canopy cover. The Project may use i-Tree Canopy, LiDAR, or another method approved by the Registry. The Project may prove canopy cover by using the i-Tree Canopy tool (available from http://www.itreetools.org/) and submitting to the Registry the i-Tree Canopy report for the Project Area, plus the i-Tree Canopy export file containing the coordinates of all evaluated points and the evaluation of each point. If using sampling like i-Tree rather than a wall-to-wall map, enough points must be sampled so that the standard error of the percent canopy cover is less than 10%. The carbon stock attributed to the Project equals:

Project Stock = Stock * Percent

Where "Project Stock" is the number of tonnes of stored carbon stock used for subsequent calculations of credits attributed to the project, "Stock" is the live tree or total non-soil carbon stock per acre estimated using tables from GTR NE-343 times the number of acres in the Project Area, and "Percent" is the percent canopy cover.

Because the tables in GTR NE-343 cover a wide range of conditions, some stands will have less carbon stock than the amount estimated by using the tables. If a project estimates carbon stock using these tables, the "Accounting Stock" shall be 80% of the "Project Stock" estimated in the equation above in this subsection. The application of this 80% factor to the calculation of carbon stock using the GTR tables is an additional deduction imposed to make the GTR-based calculation conservative.

- B. An inventory of live trees at least 5" in diameter at 4.5' above the ground (where the height above the ground is measured on the uphill side of the tree) present on the Project Area using i-Tree methods and tools. When using this method, the Accounting Stock attributed to the project is the carbon stock calculated by i-Tree, minus one standard error of that estimate. For example, if the mean estimated carbon stock is 100 tonnes, and the standard error is 10 tonnes, then the number of Accounting Stock attributed to the project is 90 tonnes.
- C. A forest inventory using accepted forestry methods and biomass equations that are valid for the species, growth conditions, and tree sizes to which the equations are being applied and that are published in a peer reviewed publication, by a government agency, or by a not-for-profit organization. The Project Operator must obtain approval from the Registry before commencing a forest inventory. The Project Operator may choose to include smaller trees, standing dead trees, and/or down dead wood. When using this method, the Accounting Stock attributed to the Project is the mean estimated carbon stock, minus one standard error of that estimate.

11.2 Areas Expected to Remain in Trees after Potential Development

When an area is developed, some trees may be retained. This subsection adjusts the "Accounting Stock" calculated in the preceding subsection to adjust for the fact that even with development, some of the trees within the Project Area may remain, and the carbon in these remaining trees is not emitted during development. To account for these trees that might remain after development, the Project Operator must do the following accounting:

- A. In industrial, agricultural, commercial, mixed use, and other primarily non-residential zones, 90% of the Accounting Stock on the Project Area is the "Avoided Biomass Emissions"; or
- B. In residential zones the smaller of:
 - i. 90% of the Accounting Stock, or
 - ii. 2 acres per allowed dwelling unit plus 10% of the remaining Project Area, calculated as:

Avoided Biomass Emissions = Accounting Stock * (((2 * Dwellings)) + ((Project Acres – (2 * Dwellings)) * 0.1)) / Project Acres)

Where "Accounting Stock" is defined in Section 11.1, "Dwellings" is the number of dwelling units allowed by zoning to be built within the Project Area, and "Project Area" is the area (in acres) specified by the Project Operator per Section 1.4. If zoning for a Project allows less than 3 dwelling units per acre the calculation in B.ii. must be calculated to confirm which is the smaller value.

11.3 Re-measurement and Verification of Carbon Stock Necessary to Claim Additional Credits for Growth

If the Project Operator wishes to claim credits for ongoing tree growth occurring within the Project Area after the Project Commencement, it must submit an updated Project Design Document with quantification of additional growth. Only the quantified and verified increase in stored carbon from the prior issuance of credits may be requested. Increases may be quantified using any method approved by the Registry in Section 11.1, including deductions for calculation of the "Accounting Stock." The fraction of the "Accounting Stock" of new biomass sequestration in new growth that counts as "Avoided Biomass Emissions" is the same as the fraction that is the number of "Avoided Biomass Emissions" present at the project start date divided by the "Accounting Stock" present at the project start date.

11.4 Quantification of Soil Carbon

The Project may claim avoidance of emissions from soil carbon caused by conversion of soils to impervious surfaces in the Project Area. Avoided soil carbon emissions shall be no more than the lesser of the area of avoided forest clearing calculated in Section 11.2 and:

- A. On commercial, industrial, and mixed use and other non-residential zones, if the applicable zoning and development rules specify a maximum fraction of parcel area that may be in impervious surface, up to the allowed impervious area may be claimed as avoided conversion to impervious surface. If the applicable zoning and development rules do not limit impervious area, 90% of the Project Area in commercial, industrial, agricultural (where annual crops and plowing are common practices in that region) or mixed-use zones may be attributed to being eligible for conversion to impervious surface.
- B. On residential zones, if the applicable zoning and development rules specify a maximum fraction of parcel area that may be in impervious surface, up to the allowed impervious area may be claimed as avoided conversion to impervious surface. If the applicable zoning and development rules do not limit impervious area, 50% of the Project Area that is in a residential zone may be attributed to being eligible for conversion to impervious surface.

C. For development uses of the project area that retain live vegetation on the ground, such as creation of recreational grass playfields, there are no soil carbon emissions attributed to development. If potential development of the Project Area would include some vegetative cover, and some non-vegetated surface uses (such as parking lots, restrooms associated with playfields, or artificial turf playfields), divide the Project Area into areas with vegetation and without vegetation, and analyze each area separately.

If there is existing impervious surface within the Project Area, that existing impervious area must be subtracted from the potential area of impervious surface underdeveloped use, to calculate net area of avoided impervious surface for calculating avoided soil carbon emissions.

Per acre of avoided impervious surface, the project may claim 120 metric tonnes carbon dioxide equivalent of Avoided Soil Carbon Emissions per acre of net avoided impervious surface. This emission rate is based on research studies showing that when soil is removed from a site and piled with minimal revegetation, 65% of the soil carbon stock is lost, and soil carbon mapping showing that almost all US forest soils have more than 185 metric tonnes carbon dioxide equivalent per acre in the top meter of soil. The calculation is:

Avoided Soil Carbon Emissions = Avoided Impervious Surface * 120

Where "Avoided Impervious Surface" is the number of acres within the Project Area that are developable according to the requirements of Section 1.4.A, in units of acres, after the adjustments specified in Sections 11.4.A and 11.4.B.

11.5 Calculation of Deduction for Displaced Development

Preventing development of some lands is likely to displace development to other lands. Displacing development to other lands may or may not cause emissions from trees and soil. If development is displaced to locations with no trees but with minimally disturbed soils, there would be no biomass emission attributed to the displacement but there would be soil carbon emissions resulting from the displacement. If development is displaced to previously developed sites, there could be negligible emissions from biomass and soil from sites where development is displaced to.

All projects are assigned a deduction based on average emissions from displacement of development throughout the U.S. The calculation of the displaced development deduction is described in Appendix B.

A. Of the total number of tonnes of Avoided Biomass Emissions from within the Project Area, 18.3% are assumed to be emitted from development displaced from the Project Area. Therefore, the number of creditable tonnes of Avoided Biomass Emissions is calculated by reducing the number of tonnes

of Avoided Biomass Emissions calculated in Section 11.2 by 18.3%. In the sequence of calculations, this reduction is done immediately prior to calculation of Reversal Pool obligations. The calculation is:

Credits from Avoided Biomass Emissions = Avoided Biomass Emissions * (1 - 0.183)

B. Of the total number of tonnes of Avoided Soil Carbon Emissions from within the Project Area, 30.3% are assumed to be emitted from development displaced from the Project Area. Therefore, the number of creditable tonnes of Avoided Soil Carbon Emissions is calculated by reducing the number of tonnes of Avoided Soil Carbon Emissions attributed to within the project area by 30.3%. In the sequence of calculations, this reduction is done immediately prior to calculation of Reversal Pool obligations. The calculation is:

Credits from Avoided Soil Emissions = Avoided Soil Carbon Emissions * (1 – 0.303)

Credits attributed to the Project are the sum of Avoided Biomass Emissions plus Avoided Soil Carbon Emissions, after adjusting for displacement of development as provided for in this section, plus credits for tree growth if growth is quantified.

Of the credits attributed to the project, verified by the Registry, and issued to the project, 90% shall be issued to the Project Operator and 10% shall be transferred to the Registry Reversal Pool Account.

11.6 Quantifying Co-Benefits

Project Operators will calculate co-benefits separately from $CO_2(e)$. The Registry supplies a quantification tool developed by CFC scientists that Project Operators shall use to quantify co-benefits for their climate zone. The tool includes instructions on data and inputs required for co-benefit calculation of rainfall interception, reductions of certain air compounds, and energy savings. The scientific basis for the co-benefits is set out in Appendix C to this Protocol.

12. Social Impacts

In 2015, all United Nations Member States agreed to the 2030 Agenda for Sustainable Development, sharing a blueprint for peace and prosperity for people and the planet, now and into the future. The 17 United Nations Sustainable Development Goals (SDGs) are an urgent call for action and global partnership among all countries, representing key benchmarks for creating a better world and environment for everyone. There are 169 targets and associated indicators for the 17 SDGs. Urban tree preservation carbon projects

drive action towards one or more SDGs. The City Forest Credits Carbon Projects Social Impact Background Document describes the alignment and connections in more detail.

Project Operators shall use the Carbon Project Social Impact template to evaluate the SDGs to determine how a Project provides social impacts that contribute towards achievement of the global goals. The template will be provided before request for credit issuance.

13. Validation and Verification

The Registry will retain a qualified and approved Validation and Verification Body (VVB) to verify compliance with this Tree Preservation Protocol per the requirements set forth herein and per International Standards Organization 14064-3. Specifically, the Registry adopts and utilizes the following standards from ISO 14064-3:

- Upon receiving a completed Project Design Document with data on eligibility, quantification of carbon, and a request for credits, the Registry will retain a VVB to verify the project's compliance with this Protocol. The Registry will be independent of specific project activities.
- Verification by a VVB is described in more detail below. Urban forest projects, unlike many other types of carbon offset projects, will be conducted in and around urban areas, by definition. The trees in urban forest projects will be visible to virtually any resident of that urban area, and to anyone who cares to examine project trees.
- The Registry will maintain independence from the activities of projects and will treat all projects equally with regard to verification.
- The Registry requires a reasonable level of assurance in the accuracy the asserted GHG removals.
- The verification items identified in Table 12.2 and the following sections are all material elements, and any asserted GHG removals must be free of material errors, misstatements, or omissions regarding those elements.
- The Registry will record, store, and track all quantification and verification data and either display it for public review or make it available for public review upon request.
- The Registry will follow a process for follow-up and maintenance for consistency and continuity. This process will consist of a validation by the Registry to ensure that the Verification Report for each Project is consistent with the Project Documents submitted by the Project Operator.

13.1 Verification of Eligibility Requirements

Table 13.1 displays the verification for eligibility requirements.

Table 13.1

Item	Elements to Verify	Protocol	How
	_	Section	
1	Project Operator Identity	1.1	State/local records
2	Project Implementation	1.2	Signed/received
	Agreement		
3	Location	1.3	Maps/location data
4	Project Area	1.4	Maps/location data
5	Right to Receive Credits	1.5	Deed or Recorded Agreement
6	Commencement	2	Recorded Encumbrance
			effective date
7	Project Documentation	3	Check documents
8	Project Duration	2	Recorded Encumbrance
9	Preservation Commitment	4	Recorded Encumbrance
10	No Pre-existing Preservation	4	Project Design Document and
			Supporting Documentation
11	Threat of Tree Loss	4	Project Design Document and
			Supporting Documentation
12	Attestation of Additionality, No	5	Attestations
	Net Harm, and No Double		
	Counting		

13.2 Verification of Project Operator's Quantification of Carbon

Table 13.2 displays the verification requirements for quantification.

Table 13.2

Item	Elements to Verify	Protocol Section
1	Quantifying Stored Carbon Stock, Calculating Accounting	10.1
	Stock	
2	Calculating Avoided Biomass Emissions	10.2
3	Additional Growth	10.3
4	Calculating Avoided Soil Carbon Emissions	10.4
5	Calculating Leakage or Displaced Development	10.5
	Adjustments	

13.3 Validation

The Registry shall conduct validation activities at three times.

A. Pre-Application

Before reviewing an application, the Registry conducts a validation screening:

- Validate eligibility under the protocol eligibility requirements
- Validate the Project Operator's understanding of the commitments it must make if it proceeds with the project:
 - Complying with the Protocol
 - Submitting project documents, including a Project Implementation Agreement with Registry
 - Quantifying carbon dioxide and ecosystem co-benefits according to the appropriate methodology
 - Conducting monitoring and reporting for the Project Duration

B. Before Third-Party Verification

Upon submittal of a final Project Design Document (PDD) and before third-party verification, the Registry will:

- Review the PDD and its supporting documents for:
 - Compliance with Protocol PDD requirements
 - Demonstration that the project meets the Protocol eligibility requirements

C. After Receiving the Verification Report

When the third-party verifier produces its Verification Report, the Registry then reviews that Report to ensure the following:

The Verification Report accurately reflects the documentation contained in the PDD and supporting documents. The Registry shall document it validation activities in a written report that shall be posted publicly with other project documents.

14. Verification Report

The VVB retained by the Registry shall submit its Verification Report in compliance with the requirements of Section 13 of this Protocol and of ISO 14064-3.

The Verification Report shall contain at a minimum reporting on

- Verification process, data reviewed, standards applied
- The Verifier's verification of compliance with Protocol requirements and of the Project Operator's GHG reduction assertion in its Completed Project Design Document
- Verification of the Project Area
- Total Credits Attributed to that Project and allocation of credits by sub-area or property if requested by the Project Operator in the Completed Project Design Document
- Deductions for the program-wide Reversal Pool Account of credits
- Schedules for Issuance of Credits

Appendices

A. Project Process Guide

The following sets out a non-binding guide to the process workflow of a preservation project. This is offered for informational purposes only. Templates for all documents are available on Registry website.

- 1. Pre-application discussion between Project Operator and Registry. Review checklist of requirements regarding:
 - a. Eligibility
 - b. Quantification
 - c. Process guidance
- 2. Application and Project Implementation Agreement
 - a. Project Operator complete application and submit to Registry. Application includes summary of project, contact information, and property map.
 Registry review application, revise as needed, and approve. Registry sends approval letter to Project Operator.
 - b. Project Operator and Registry sign Project Implementation Agreement.
 - c. Application fee paid
- 3. Project Operator conducts quantification per Protocol, and submits "Completed Project Design Document (PDD)"
 - a. Note: Project Operator checks in with Registry throughout Quantification to ensure acceptable process, documentation, and assertions
 - Registry validates the documentation submitted by the Project Operator by reviewing all information and data for compliance with protocol requirements
- 4. Registry secures third-party "Verification Report" of Completed PDD
 - a. Project Operator works with verifier to resolve any issues, make revisions, resubmit PDD to Registry for approval, and finalize verification

- b. The Registry conducts a validation after receiving the Verification Report to ensure that the Verification Report is consistent with all information and data submitted by the Project Operator
- 5. After receiving final Verification Report, as well as a request from the Project Operator for issuance of credits, the Registry issues Carbon+ Credits to the Project Operator, in the amount and schedule specified by the Verification Report

B. Derivation of displaced development factors

When a project takes land out of the pool of land available for development, that action reduces the supply of land available for development or re-development. Some, but not all of the development that would have occurred on project lands is shifted to other lands.

Deductions for displaced development have two components. One component is estimating the fraction of development that is displaced. The second component is estimating emissions for each unit of development displaced.

The amount of displacement has been modelled econometrically by estimating the effect of a change in supply on price, and then estimating the effect of that change in price on demand, and calculating how much total demand changes.

Calculating the fraction of development displaced requires measurements of the relationships of (a) change in price with change in supply, and (b) change in price with change in demand. Both of these relationships have been estimated empirically.

Reducing the supply increases the price of the remaining available lands, which motivates more landowners to put their land on the market and make it available for sale. Economists call this relationship the price elasticity of supply. Wheaton, Chervachidze and Nechayev (2014) estimated the long run price elasticity of supply of housing in 68 metropolitan areas in the US.

Including outlier cases with unusual situations, the median elasticity found for the 68 metropolitan areas is 0.8715. This means that for a small fractional increase in price, the supply would increase by 0.8715. For example, for a 1% increase in price, 0.87% more properties come onto the market.

At the same time, when price increases, demand decreases. Gyourko and Voith (1999) calculate that the price elasticity of demand for residential land is -1, which means when price increases 1% then demand decreases 1%.

The equilibrium with these two shifts can be calculated. This calculation of displacement uses the equation for quantifying displacement given in Murray, McCarl and Lee (2004). We

assume that the amount of land conserved is small relative to the total supply of land in an urban area. This is a conservative assumption because as the fraction of total land conserved increases, less land is available for development elsewhere, and less displacement occurs, so not adjusting for the fraction of total supply conserved has very little effect to a small overestimate of displacement. Using the elasticity of supply of 0.8715 and the elasticity of demand of -1, and the equation for calculating the net displacement as an interaction of supply and demand elasticities, 46.6% of the reduced development is made up elsewhere.

On average, lands to which development is displaced have less than 100% forest canopy. Nowak and Greenfield (2018) calculate the average tree canopy cover of US urban areas at 39.4%. We assume that the biomass carbon stock per acre, acres per dwelling unit, and acres of land per square foot of built commercial space are the same. This may be a conservative assumption, because as supply of land is decreased, the density of development increases, with more residences and more square feet of commercial buildings per acre of land. Multiplying the 46.6% of development that occurs elsewhere because of conservation of project lands, times 39.4% tree cover on the lands receiving the displacement means that 18.3% of the conserved tree carbon is lost from displacement of development.

Similarly, there is displacement of impervious surface, which reduces the soil carbon benefit of conserving lands.

The soil displacement factor uses the same displacement rate of 46.6% that is used to calculate the deduction for displacement of biomass emissions.

We have been unable to find measurements of the percent impervious surface in newly developed and re-developed land parcels in US urban areas. Natural Resources Conservation Service (1986) gives the following percent impervious surface by development type:

Use	Percent Impervious	
	Surface	
Commercial	85	
Industrial	72	
Residential, 1/8 acre or less per dwelling unit	65	
Residential, 1/4 acre per dwelling unit	38	
Residential, 1/3 acre per dwelling unit	30	
Residential, 1/2 acre per dwelling unit	25	
Residential, 1 acre per dwelling unit	20	
Residential, 2 acre per dwelling unit	12	

Based on discussions with entities considering use of this protocol, it appears that most land that would be conserved is in residential zones. Most of the land zoning would require more than 1/8 acre per dwelling unit. As a conservative but plausible average, we take the impervious cover percentage of the densest residential category, 65%, and assume that a substantial fraction of the residential development is somewhat lower density with a lower fraction impervious surface, and a moderate fraction is commercial development with a higher fraction impervious cover.

Multiplying 65% impervious surface times 46.6% of the development avoided by the project occurring elsewhere equals 30.3% of the soil carbon is lost due to displaced development.

References:

Gyourko, Joseph and Richard Voith. 1999. The Price Elasticity of the Demand for Residential Land: Estimation and Implications of Tax Code-Related Subsidies on Urban Form. Lincoln Institute of Land Policy Working Paper WP99JG1.

Murray Brian, Bruce McCarl, and Heng-Chi Lee. 2004. Estimating leakage from forest carbon sequestration programs. *Land Economics*. 80(1): 109-124.

Natural Resources Conservation Service. 1986. *Urban Hydrology for Small Watersheds*. Technical Release 55. Conservation Engineering Division.

Nowak, David J. and Eric J. Greenfield. 2018. Declining urban and community tree cover in the United States. *Urban Forestry and Urban Greening*. 32: 32-55.

Wheaton, William C., Serguei Chervachidze, and Gleb Nechayev. 2014. Error Correction Models of MSA Housing "Supply" Elasticities: Implications for Price Recovery. MIT Center for Real Estate. https://dspace.mit.edu/bitstream/handle/1721.1/84478/Wheaton14-05.pdf?sequence%3D1

C. Quantifying Co-Benefits for City Forest Preservation Projects

Introduction

Ecoservices provided by trees to human beneficiaries are classified according to their spatial scale as global and local (Costanza, 2008). Removal of carbon dioxide (CO₂) from the atmosphere by urban forests is global because the atmosphere is so well-mixed it does not matter where the trees are located. The effects of urban forests on building energy use is a local-scale service because it depends on the proximity of trees to buildings.

To quantify these and other ecoservices City Forest Credits (CFC) has relied on peer-reviewed research for quantification of CO₂ storage, and effects of trees on building energy use, rainfall interception, and air quality. CFC's quantification tools provide estimates of cobenefits after 25 years in Resource Units (i.e., kWh of electricity saved) and \$ per year. Values for co-benefits are first-order approximations extracted from the i-Tree Streets (i-Tree Eco) datasets for each of the 16 U.S. reference cities/climate zones (https://www.itreetools.org/tools/i-tree-eco) (Maco and McPherson, 2003). Modeling approaches and error estimates associated with co-benefits have been documented in numerous publications (see References below) and are summarized here.

Quantification of Carbon Dioxide Storage

For City Forest Preservation Projects, as distinct from Planting Projects, the quantification of CO₂ storage is set forth in Section 10 of the Preservation Protocol. Section 10 describes the methods and source materials, and the Displaced Development (leakage) methodology is set forth in Appendix B to that Preservation Protocol.

Quantification of Co-Benefits Source Materials

Data on co-benefits are based on the U.S. Forest Service's recently published technical manual and the extensive Urban Tree Database (UTD), which catalogs urban trees with their projected growth tailored to specific geographic regions (McPherson et al. 2016a, b). The products are a culmination of 14 years of work, analyzing more than 14,000 trees across the United States. Whereas prior growth models typically featured only a few species specific to a given city or region, the newly released database features 171 distinct species across 16 U.S. climate zones. The trees studied also spanned a range of ages with data collected from a consistent set of measurements. Advances in statistical modeling have given the projected growth dimensions a level of accuracy never before seen. Moving beyond just calculating a tree's diameter or age to determine expected growth, the research incorporates 365 sets of tree growth equations to project growth.

Users select their climate zone from the 16 U.S. climate zones (Fig. 1). Calculations of CO_2 stored are for a representative species for each tree-type that was one of the predominant street tree species per reference city (Peper et al., 2001). The "Reference city" refers to the city selected for intensive study within each climate zone (McPherson, 2010). About 20 of the most abundant species were selected for sampling in each reference city. The sample was stratified into nine diameter at breast height (DBH) classes (0 to 7.6, 7.6 to 15.2, 15.2 to 30.5, 30.5 to 45.7, 45.7 to 61.0, 61.0 to 76.2, 76.2 to 91.4, 91.4 to 106.7, and >106.7 cm). Typically, 10 to 15 trees per DBH class were randomly chosen. Data were collected for 16 to 74 trees in total from each species. Measurements included: species name, age, DBH [to the nearest 0.1 cm (0.39 in)], tree height [to the nearest 0.5 m (1.64 ft.)], crown height [to the nearest 0.5 m (1.64 ft.)]. Tree age was determined

from local residents, the city's urban forester, street and home construction dates, historical planting records, and aerial and historical photos.

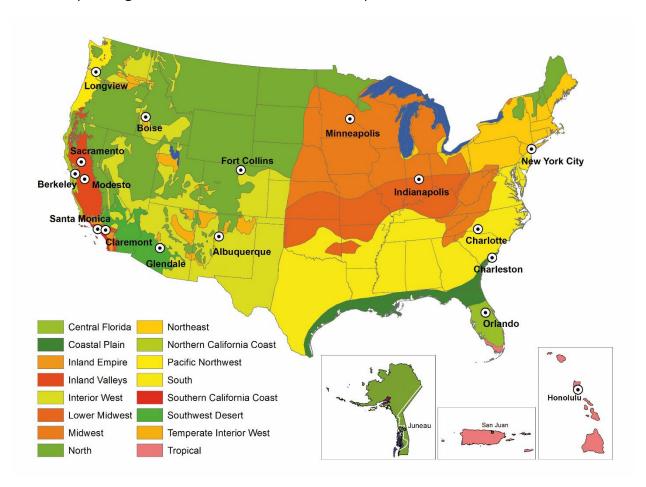


Fig. 1. Climate zones of the United States and Puerto Rico were aggregated from 45 Sunset climate zones into 16 zones. Each zone has a reference city where tree data were collected. Sacramento, California was added as a second reference city (with Modesto) to the Inland Valleys zone. Zones for Alaska, Puerto Rico and Hawaii are shown in the insets (map courtesy of Pacific Southwest Research Station).

Co-Benefit: Energy Savings

Trees and forests can offer energy savings in two important ways. In warmer climates or hotter months, trees can reduce air conditioning bills by keeping buildings cooler through reducing regional air temperatures and offering shade. In colder climates or cooler months, trees can confer savings on the fuel needed to heat buildings by reducing the amount of cold winds that can strip away heat.

Energy conservation by trees is important because building energy use is a major contributor to greenhouse gas emissions. Oil or gas furnaces and most forms of electricity generation produce CO_2 and other pollutants as by-products. Reducing the amount of energy consumed by buildings in urban areas is one of the most effective methods of combatting climate change. Energy consumption is also a costly burden on many low-income families, especially during mid-summer or mid-winter. Furthermore, electricity consumption during mid-summer can sometimes over-extend local power grids leading to rolling brownouts and other problems.

Energy savings are calculated through numerical models and simulations built from observational data on proximity of trees to buildings, tree shapes, tree sizes, building age classes, and meteorological data from McPherson et al. (2017) and McPherson and Simpson (2003). The main parameters affecting the overall amount of energy savings are crown shape, building proximity, azimuth, local climate, and season. Shading effects are based on the distribution of street trees with respect to buildings recorded from aerial photographs for each reference city (McPherson and Simpson, 2003). If a sampled tree was located within 18 m of a conditioned building, information on its distance and compass bearing relative to a building, building age class (which influences energy use) and types of heating and cooling equipment were collected and used as inputs to calculate effects of shade on annual heating and cooling energy effects. Because these distributions were unique to each city, energy values are considered first-order approximations.

In addition to localized shade effects, which were assumed to accrue only to trees within 18 m of a building, lowered air temperatures and windspeeds from increased neighborhood tree cover (referred to as climate effects) can produce a net decrease in demand for winter heating and summer cooling (reduced wind speeds by themselves may increase or decrease cooling demand, depending on the circumstances). Climate effects on energy use, air temperature, and wind speed, as a function of neighborhood canopy cover, were estimated from published values for each reference city. The percentages of canopy cover increase were calculated for 20-year-old large, medium, and small trees, based on their crown projection areas and effective lot size (actual lot size plus a portion of adjacent street and other rights-of-way) of 10,000 ft² (929 m²), and one tree on average was assumed per lot. Climate effects were estimated by simulating effects of wind and air-temperature reductions on building energy use.

In the case of urban Tree Preservation Projects, trees may not be close enough to buildings to provide shading effects, but they may influence neighborhood climate. Because these effects are highly site-specific, we conservatively apply an 80% reduction to the energy effects of trees for Preservation Projects.

Energy savings are calculated as a real-dollar amount. This is calculated by applying overall reductions in oil and gas usage or electricity usage to the regional cost of oil and gas or electricity for residential customers. Colder regions tend to see larger savings in heating and warmer regions tend to see larger savings in cooling.

Error Estimates and Limitations

Formulaic errors occur in modeling of energy effects. For example, relations between different levels of tree canopy cover and summertime air temperatures are not well-researched. Another source of error stems from differences between the airport climate data (i.e., Los Angeles International Airport) used to model energy effects and the actual climate of the study area (i.e., Los Angeles urban area). Because of the uncertainty associated with modeling effects of trees on building energy use, energy estimates may be accurate within ± 25 percent (Hildebrandt & Sarkovich, 1998).

Co-Benefit: CO₂ Avoided

Energy savings result in reduced emissions of CO₂ and criteria air pollutants (volatile organic hydrocarbons [VOCs], NO₂, SO₂, PM₁₀) from power plants and space-heating equipment. Cooling savings reduce emissions from power plants that produce electricity, the amount depending on the fuel mix. Electricity emissions reductions were based on the fuel mixes and emission factors for each utility in the 16 reference cities/climate zones across the U.S. The dollar values of electrical energy and natural gas were based on retail residential electricity and natural gas prices obtained from each utility. Utility-specific emission factors, fuel prices and other data are available in the Community Tree Guides for each region (https://www.fs.fed.us/psw/topics/urban_forestry/products/tree_guides.shtml). To convert the amount of CO₂ avoided to a dollar amount in the spreadsheet tools, City Forest Credits uses the price of \$20 per metric ton of CO₂.

As with Energy Savings, because these effects are highly site-specific, we conservatively apply an 80% reduction to the CO_2 Avoided calculation of this benefit of trees for Preservation Projects.

Error Estimates and Limitations

Estimates of avoided CO₂ emissions have the same uncertainties that are associated with modeling effects of trees on building energy use. Also, utility-specific emission factors are changing as many utilities incorporate renewable fuels sources into their portfolios. Values reported in CFC tools may overestimate actual benefits in areas where emission factors have become lower.

Co-Benefit: Rainfall Interception

Forest canopies normally intercept 10-40% of rainfall before it hits the ground, thereby reducing stormwater runoff. The large amount of water that a tree crown can capture during a rainfall event makes tree planting a best management practice for urban stormwater control.

City Forest Credits uses a numerical interception model to calculate the amount of annual rainfall intercepted by trees, as well as throughfall and stem flow (Xiao et al., 2000). This model uses species-specific leaf surface areas and other parameters from the Urban Tree Database. For example, deciduous trees in climate zones with longer "in-leaf" seasons will tend to intercept more rainfall than similar species in colder areas shorter foliation periods. Model results were compared to observed patterns of rainfall interception and found to be accurate. This method quantifies only the amount of rainfall intercepted by the tree crown, and does not incorporate surface and subsurface effects on overland flow.

The rainfall interception benefit was priced by estimating costs of controlling stormwater runoff. Water quality and/or flood control costs were calculated per unit volume of runoff controlled and this price was multiplied by the amount of rainfall intercepted annually.

Error Estimates and Limitations

Estimates of rainfall interception are sensitive to uncertainties regarding rainfall patterns, tree leaf area and surface storage capacities. Rainfall amount, intensity and duration can vary considerably within a climate zone, a factor not considered by the model. Although tree leaf area estimates were derived from extensive measurements on over 14,000 street trees across the U.S. (McPherson et al., 2016a), actual leaf area may differ because of differences in tree health and management. Leaf surface storage capacity, the depth of water that foliage can capture, was recently found to vary threefold among 20 tree species (Xiao & McPherson, 2016). A shortcoming is that this model used the same value (1 mm) for all species. Given these limitations, interception estimates may have uncertainty as great as ± 20 percent.

Co-Benefit: Air Quality

The uptake of air pollutants by urban forests can lower concentrations and affect human health (<u>Derkzen et al., 2015</u>; <u>Nowak et al., 2014</u>). However, pollutant concentrations can be increased if the tree canopy restricts polluted air from mixing with the surrounding atmosphere (<u>Vos et al., 2013</u>). Urban forests are capable of improving air quality by lowering pollutant concentrations enough to significantly affect human health. Generally, trees are able to reduce ozone, nitric oxides, and particulate matter. Some trees can reduce net volatile organic compounds (VOCs), but others can increase them through natural processes. Regardless of the net VOC production, urban forests usually confer a net positive benefit to air quality. Urban forests reduce pollutants through dry deposition on surfaces and uptake of pollutants into leaf stomata.

A numerical model calculated hourly pollutant dry deposition per tree at the regional scale using deposition velocities, hourly meteorological data and pollutant concentrations from local monitoring stations (Scott et al., 1998). The monetary value of tree effects on air quality reflects the value that society places on clean air, as indicated by willingness to pay for pollutant reductions. The monetary value of air quality effects were derived from

models that calculated the marginal damage control costs of different pollutants to meet air quality standards (Wang and Santini 1995). Higher costs were associated with higher pollutant concentrations and larger populations exposed to these contaminants.

Error Estimates and Limitations

Pollutant deposition estimates are sensitive to uncertainties associated with canopy resistance, resuspension rates and the spatial distribution of air pollutants and trees. For example, deposition to urban forests during warm periods may be underestimated if the stomata of well-watered trees remain open. In the model, hourly meteorological data from a single station for each climate zone may not be spatially representative of conditions in local atmospheric surface layers. Estimates of air pollutant uptake may be accurate within \pm 25 percent.

Conclusions

Estimates of co-benefits often reflect an incomplete understanding of the processes by which ecoservices are generated and valued (Schulp et al., 2014). Our choice of co-benefits to quantify was limited to those for which numerical models were available. There are many important benefits produced by trees that are not quantified and monetized. These include effects of urban forests on local economies, wildlife, biodiversity, and human health and well-being. For instance, effects of urban trees on increased property values have proven to be substantial (Anderson & Cordell, 1988). Previous analyses modeled these "other" benefits of trees by applying the contribution to residential sales prices of a large front yard tree (0.88%) (McPherson et al., 2005). We have not incorporated this benefit because property values are highly variable. It is likely that co-benefits reported here are conservative estimates of the actual ecoservices resulting from local tree planting and preservation projects.

References

Aguaron, E., & McPherson, E. G. (2012). Comparison of methods for estimating carbon dioxide storage by Sacramento's urban forest. In R. Lal & B. Augustin (Eds.), *Carbon sequestration in urban ecosystems* (pp. 43-71). Dordrecht, Netherlands: Springer.

Anderson, L. M., & Cordell, H. K. (1988). Influence of trees on residential property values in Athens, Georgia: A survey based on actual sales prices. Landscape and Urban Planning, 15, 153-164.

Cairns, M. A., Brown, S., Helmer, E. H., & Baumgardner, G. A. (1997). Root biomass allocation in the world's upland forests. Oecologia 111, 1-11.

Costanza, R. (2008). Ecosystem services: Multiple classification systems are needed. Biological Conservation, 141(2), 350-352. doi: http://dx.doi.org/10.1016/j.biocon.2007.12.020

Derkzen, M. L., van Teeffelen, A. J. A., & Verburg, P. H. (2015). Quantifying urban ecosystem services based on high-resolution data of urban green space: an assessment for Rotterdam, the Netherlands. Journal of Applied Ecology, 52(4), 1020-1032. doi: 10.1111/1365-2664.12469

Hildebrandt, E. W., & Sarkovich, M. (1998). Assessing the cost-effectiveness of SMUD's shade tree program. Atmospheric Environment, 32, 85-94.

Husch, B., Beers, T. W., & Kershaw, J. A. (2003). *Forest Mensuration* (4th ed.). New York, NY: John Wiley and Sons.

Jenkins, J.C.; Chojnacky, D.C.; Heath, L.S.; Birdsey, R.A. (2004). Comprehensive database of diameter-based biomass regressions for North American tree species. Gen. Tech. Rep. NE-319. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station. 45 p.

Lefsky, M., & McHale, M. (2008). Volume estimates of trees with complex architecture from terrestrial laser scanning. Journal of Applied Remote Sensing, *2*, 1-19. doi: 02352110.1117/1.2939008

Leith, H. (1975). Modeling the primary productivity of the world. Ecological Studies, *14*, 237-263.

Maco, S.E., & McPherson, E.G. (2003). A practical approach to assessing structure, function, and value of street tree populations in small communities. Journal of Arboriculture. 29(2): 84-97.

McPherson, E. G. (2010). Selecting reference cities for i-Tree Streets. Arboriculture and Urban Forestry, *36*(5), 230-240.

McPherson, E. Gregory; van Doorn, Natalie S.; Peper, Paula J. (2016a). Urban tree database and allometric equations. General Technical Report PSW-253. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, CA. 86 p. TreeSearch #52933

McPherson, E. Gregory; van Doorn, Natalie S.; Peper, Paula J. (2016b). Urban tree database. Fort Collins, CO: Forest Service Research Data Archive. http://dx.doi.org/10.2737/RDS-2016-0005

McPherson, G., Q. Xiao, N. S. van Doorn, J. de Goede, J. Bjorkman, A. Hollander, R. M. Boynton, J.F. Quinn and J. H. Thorne. (2017). The structure, function and value of urban forests in California communities. Urban Forestry & Urban Greening. 28 (2017): 43-53.

McPherson, E. G., & Simpson, J. R. (2003). Potential energy saving in buildings by an urban tree planting programme in California. Urban Forestry & Urban Greening, 3, 73-86.

McPherson, E. G., Simpson, J. R., Peper, P. J., Maco, S. E., & Xiao, Q. (2005). Municipal forest benefits and costs in five U.S. cities. Journal of Forestry, 103, 411-416.

Nowak, D. J., Hirabayashi, S., Bodine, A., & Greenfield, E. (2014). Tree and forest effects on air quality and human health in the United States. Environmental Pollution, 193, 119-129.

Peper, P. J., McPherson, E. G., & Mori, S. M. (2001). Equations for predicting diameter, height, crown width and leaf area of San Joaquin Valley street trees. Journal of Arboriculture, 27(6), 306-317.

Schulp, C. J. E., Burkhard, B., Maes, J., Van Vliet, J., & Verburg, P. H. (2014). Uncertainties in ecosystem service maps: A comparison on the European scale. PLoS ONE 9(10), e109643.

Scott, K. I., McPherson, E. G., & Simpson, J. R. (1998). Air pollutant uptake by Sacramento's urban forest. Journal of Arboriculture, 24(4), 224-234.

Timilsina, N., Staudhammer, C.L., Escobedo, F.J., Lawrence, A. (2014). Tree biomass, wood waste yield and carbon storage changes in an urban forest. Landscape and Urban Planning. 127: 18-27.

Vos, P. E. J., Maiheu, B., Vankerkom, J., & Janssen, S. (2013). Improving local air quality in cities: To tree or not to tree? Environmental Pollution, 183, 113-122. doi: http://dx.doi.org/10.1016/j.envpol.2012.10.021

Wang, M.Q.; Santini, D.J. (1995). Monetary values of air pollutant emissions in various U.S. regions. Transportation Research Record 1475. Washington DC: Transportation Research Board.

Wenger, K. F. (1984). Forestry Handbook. New York, NY: John Wiley and Sons.

Xiao, Q., E. G. McPherson, S. L. Ustin, and M. E. Grismer. A new approach to modeling tree rainfall interception. Journal of Geophysical Research. 105 (2000): 29,173-29,188.

Xiao, Q., & McPherson, E. G. (2016). Surface water storage capacity of twenty tree species in Davis, California. Journal of Environmental Quality, 45, 188-198.